Symplectix 11 mars 2022

Lieu: IHP, amphi Darboux
The seminar will take place in presence, but will be broadcasted via zoom

https://us02web.zoom.us/j/89445897442?pwd=QmVZWHBiM2Nwb09yUVJERnYrSHJrUT09

 

10:45 Agnès Gadbled (Orsay)
Floer-Novikov fundamental group for small flux isotopies.
Abstract: In Morse theory, the number of index 1 critical points of a Morse function is bounded below by the minimal number of generators of the fundamental group. In Floer theory, Barraud gave a bound on the number of contractible 1-periodic orbits of a generic Hamiltonian thanks to a Floer version of the fundamental group. In this talk I will speak of the Novikov setting: how to define a Floer-Novikov fundamental group as a Floer generalization of a Novikov fundamental group for 1-forms (we previously defined with Barraud, Golovko and Lê) in order to get information on symplectic (non Hamiltonian) isotopies. This is a joint work with J.-F. Barraud.


14:00 Yann Rollin (Nantes)
Lagrangiens et symplectomorphismes vus comme des zéros d'applications moment.
Abstract:  Je présenterai deux constructions de variétés kählériennes, munies d'actions Hamiltoniennes de tores de dimensions infinies. Dans le premier exemple, les zéros de l'application moment peuvent être interprétés comme des applications isotropes du tore T^2 dans R^4. Dans le deuxième exemple, la construction est hyperkählériennes et les zéros sont identifiés aux symplectomorphismes du tore T^4. Des flots d'application moment peuvent être naturellement associés à ces constructions et leur existence en temps court est garantie.

15:45 Pierre-Alexandre Arlove (Bochum)
Geodesics of norms on the contactomorphisms group of $R^2n\times S^1$.
Abstract: The study of conjugation invariant norms on the group of contactomorphisms of a contact manifold is relatively new in comparison with the intensively studied Hofer norm on the group of Hamiltonian symplectomorphisms. In this talk I will show that some particular paths of contactomorphisms are geodesics for different norms on the identity component of the group of compactly supported contactomorphisms of $R^{2n}\times S^1$ endowed with its standard contact structure.  As a corollary, I get a new proof of the unboundedness of these norms in this context. Generating functions are the main technical tools used to get this result.


Prochaines séances: 1er avril (A. Pirnapasov, G. Cazassus, ?), 13 mai (N. Porcelli, ?, ?), 10 juin (?, ?, ?)


Autre activité symplectique à Paris:

- Séminaire Nantes-Orsay (à Orsay le 18 mars)
- Symplectic Zoominar (les vendredis hors symplectix à 15:15, heure de Paris)