Lieu IHP, salle 201 
11:00  Dimitri Zvonkine (Jussieu) 
Cycles de double ramification. 
Abstract: Soit une courbe complexe  C  avec  n  points marqués  x_1,
          ... x_n. Étant donné  n  entiers  a_1, ..., a_n  de somme
          nulle on peut se demander si le diviseur  sum a_i x_i  est
          principal sur  C.  Le lieu des courbes  (C, x_1,...,x_n)
           telles que ce diviseur est principal forme une sous-variété
          de codimension  g  dans l'espace des modules des courbes de
          genre  g  avec  n  points marqués. Il s'appelle le "cycle de
          la double ramification". Le problème consistant à calculer sa
          classe d'homologie s'appelle le "problème d'Eliashberg" et a
          des applications potentielles dans la théorie symplectique des
          champs. Nous présenterons une solution de ce problème.Travail commun avec F. Janda, R. Pandharipande et A.
          Pixton.
14:15  Yasha Savelyev (Madrid) 
 
On the Hofer geometry injectivity radius conjecture. 
 
Abstract: I will discuss some basics of Hofer Finsler geometry originating in the study of symplectic geometry, and
 closely connected with the theory of Hamiltonian dynamical systems. One
 may understand this geometry as one attempt to formalize optimal 
mechanical transformations of a phase space. Then I will describe one 
basic outstanding conjecture in this field and discuss some partial 
verifications of this conjecture. The techniques employ Gromov-Witten 
theory but it should be possible to indicate basic ideas without much 
analysis.
 
16:00  Roman Golovko (Budapest)   
On Arnold-type inequality and linear representations of a characteristic algebra.
Abstract: Given a chord-generic horizontally displaceable Legendrian submanifold L
 of P x R with the property that its characteristic algebra admits a 
finite-dimensional matrix representation, we show an Arnold-type lower 
bound for the number of Reeb chords on L. This result is a 
generalization of the results of Ekholm-Etnyre-Sullivan and 
Ekholm-Etnyre-Sabloff which hold for Legendrian submanifolds whose 
Chekanov-Eliashberg algebras admit augmentations. We also provide 
examples of Legendrian submanifolds L of C^n x R, n > 0, whose 
characteristic algebras admit finite-dimensional matrix representations,
 but whose Chekanov-Eliashberg algebras do not admit augmentations. In 
addition, to show the limits of the method of proof for the bound, we 
construct examples of Legendrian submanifolds L of C^n x R with the 
property that the characteristic algebra of L does not satisfy the rank 
property. This is a joint work with Georgios Dimitroglou Rizell.
Prochaine
 séance: 22/05 (E. Giroux, K. Ono). 
